Dr Benjamin Dechant


Research Interests


I am interested in the spatio-temporal patterns and dynamics of vegetation with a focus on photosynthesis, leaf/canopy traits, as well as diversity. I am using both measurements and models from the leaf over the canopy up to global scales and am working with remote sensing techniques that include reflectance-based approaches as well as those based on lidar and (sun-induced) chlorophyll fluorescence. In terms of modelling, I am using process-based models and statistical approaches (including ML) as well as their combination.

Short CV


2021 - : Postdoc, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Synthesis Centre for Biodiversity Sciences (sDiv), Leipzig, Germany

2017-2021: Postdoc, Seoul National University, South Korea

2013-2017: PhD, Helmholtz Centre for Environmental Research - UFZ / Leipzig University, Leipzig, Germany

2007-2012: BSc Physics, MSc Ecology, Ecole Normale Superieure, Paris, France
(including gap year for language studies in East Asia 2009/2010)

2005-2007: Physics pre-diploma (Vordiplom), Technical University Munich (TUM), Germany

Selected Publications


Kim, J., Ryu, Y., Dechant, B., Lee, H., Kim, H. S., Kornfeld, A., & Berry, J. A. (2021). Solar-induced chlorophyll fluorescence is non-linearly related to canopy photosynthesis in a temperate evergreen needleleaf forest during the fall transition. Remote Sensing of Environment, 258, 112362. doi.org/10.1016/j.rse.2021.112362

Baldocchi, D. D., Ryu, Y., Dechant, B., Eichelmann, E., Hemes, K., Ma, S., Rey Sanchez, C., Shortt, R., Szutu, D., Valach, A., Verfaillie, J., Badgley, G., Zeng, Y., & Berry, J. A. (2020). Outgoing Near Infrared Radiation from Vegetation Scales with Canopy Photosynthesis Across a Spectrum of Function, Structure, Physiological Capacity and Weather. Journal of Geophysical Research: Biogeosciences. doi.org/10.1029/2019JG005534

Dechant, B., Ryu, Y., Badgley, G., Zeng, Y., Berry, J. A., Zhang, Y., Goulas, Y., Li, Z., Zhang, Q., Kang, M., Li, J., & Moya, I. (2020). Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sensing of Environment, 241, 111733. doi.org/10.1016/j.rse.2020.111733

Dechant, B., Ryu, Y., Kang, M. (2019) Making full use of hyperspectral data for gross primary productivity estimation with multivariate regression: Mechanistic insights from observations and process-based simulations. Remote Sensing of Environment 234, 111435. doi.org/10.1016/j.rse.2019.111435

Zeng, Y., Badgley, G., Dechant, B., Ryu, Y., Chen, M., & Berry, J. A. (2019). A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 232,  111209. doi.org/10.1016/j.rse.2019.05.028

Yang, K., Ryu, Y., Dechant, B., Berry, J. A., Hwang, Y., Jiang, C., … Yang, X. (2018). Sun-induced chlorophyll fluorescence is more strongly related to absorbed light than to photosynthesis at half-hourly resolution in a rice paddy. Remote Sensing of Environment, 216, 658–673. doi.org/10.1016/j.rse.2018.07.008

Dechant, B., Cuntz, M., Vohland, M., Schulz, E., & Doktor, D. (2017). Estimation of photosynthesis traits from leaf reflectance spectra: Correlation to nitrogen content as the dominant mechanism. Remote Sensing of Environment, 196, 279–292. doi.org/10.1016/j.rse.2017.05.019

Icon address

Puschstrase 4
04103 Leipzig

Icon roomnumber


Icon phone
+49 341 9733248
Icon institutes

Leipzig University

Share this site on:
iDiv is a research centre of theDFG Logo