

sPlot 3rd ordinary meeting: News, updates and ideas

Gabriella Damasceno, in name of the sPlot Consortium

sPlot 3rd ordinary meeting: News, updates and ideas

Gabriella Damasceno & Helge Bruelheide, in name of the sPlot Consortium

One year ago in Australia...

sPlot meeting in Coff's Harbor

Ideas we discussed:

Ideas we discussed:

- Create disturbance indicator maps based on community composition and diversity metrics;

Ideas we discussed:

- Create disturbance indicator maps based on community composition and diversity metrics;
- Investigate the influence of diversity (among other drivers) on global productivity;

Ideas we discussed:

- Create disturbance indicator maps based on community composition and diversity metrics;
- Investigate the influence of diversity (among other drivers) on global productivity;
- Quantify the influence of traditional communities and/or indigenous people on plant biodiversity conservation;

Ideas we discussed:

- Create disturbance indicator maps based on community composition and diversity metrics;
- Investigate the influence of diversity (among other drivers) on global productivity;
- Quantify the influence of traditional communities and/or indigenous people on plant biodiversity conservation;
- Explore global patterns of stability and resilience, using time-series data and long-term monitoring microclimate data;

Ideas we discussed:

- Create disturbance indicator maps based on community composition and diversity metrics;
- Investigate the influence of diversity (among other drivers) on global productivity;
- Quantify the influence of traditional communities and/or indigenous people on plant biodiversity conservation;
- Explore global patterns of stability and resilience, using time-series data and long-term monitoring microclimate data;
- Identify globally threatened vegetations, similarly to EUNIS Red List;

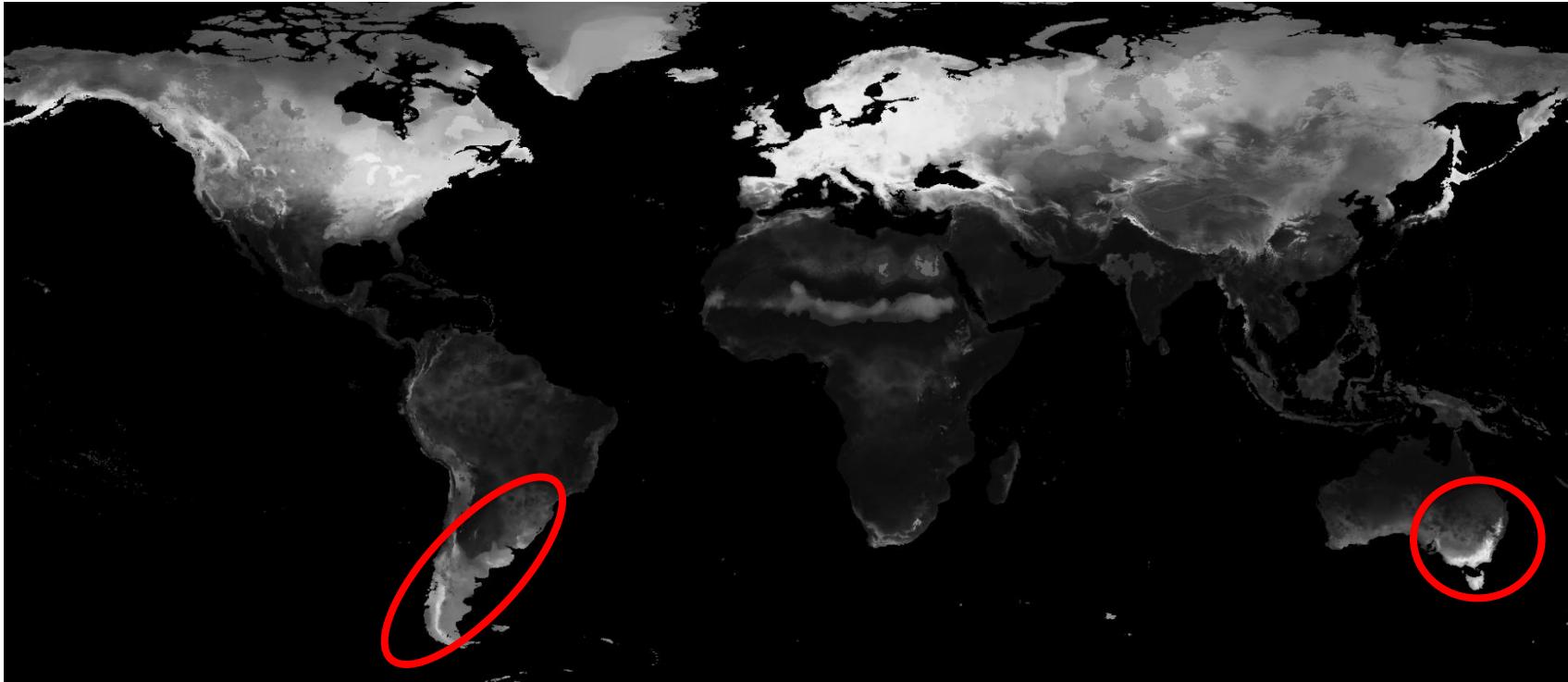
Ideas we discussed:

- Analyze plant functional diversity by vegetation formations, evidencing climatic envelopes for distinct vegetations, similarly to Whitaker's biomes graph.

Use plant co-occurrences to identify vegetation types

Use plant co-occurrences to identify vegetation types

- Led by Helge, with help from Georg Röhrborn
- Faber-Langendoen (2016) vegetation types
- Training model: classified plots in sPlot 4.0 (1.9 million plots)


Use plant co-occurrences to identify vegetation types

- Led by Helge, with help from Georg Röhrborn
- Faber-Langendoen (2016) vegetation types
- Training model: classified plots in sPlot 4.0 (1.9 million plots)

Use plant co-occurrences to identify vegetation types

- Led by Helge, with help from Georg Röhrborn
- Faber-Langendoen (2016) vegetation types
- Training model: classified plots in sPlot 4.0 (1.9 million plots)

New projects

New projects

- **#49:** Global plant invasions: the role of native diversity, human disturbance, and mutualisms. Camille Delavaux (ETH Zürich)

New projects

- **#49:** Global plant invasions: the role of native diversity, human disturbance, and mutualisms. Camille Delavaux (ETH Zürich)
- **#50:** Belowground functional trait distributions along global environmental gradients. Daniel Laughlin (University of Wyoming)

New projects

- **#49:** Global plant invasions: the role of native diversity, human disturbance, and mutualisms. Camille Delavaux (ETH Zürich)
- **#50:** Belowground functional trait distributions along global environmental gradients. Daniel Laughlin (University of Wyoming)
- **#51:** Analysing the vegetation of Siberia for determining the ethnobotanical significance of regional flora. Gayana Bexultanova (University of Glasgow)

New projects

- **#49:** Global plant invasions: the role of native diversity, human disturbance, and mutualisms. Camille Delavaux (ETH Zürich)
- **#50:** Belowground functional trait distributions along global environmental gradients. Daniel Laughlin (University of Wyoming)
- **#51:** Analysing the vegetation of Siberia for determining the ethnobotanical significance of regional flora. Gayana Bexultanova (University of Glasgow)
- **#52:** Linkages between plant functional traits and phenology across temperate zones. Nan Zhang (Chinese Academy of Sciences)

New projects

- **#53:** Mapping global trait distributions by combining citizen science data and Earth observation satellites. Teja Kattenborn (University of Freiburg)

New projects

- **#53:** Mapping global trait distributions by combining citizen science data and Earth observation satellites. Teja Kattenborn (University of Freiburg)
- **#54:** Latitudinal gradient patterns of Darwin's naturalization conundrum across spatial scales. Shuya Fan & Mark van Kleunen (University of Konstanz)

New projects

- **#53:** Mapping global trait distributions by combining citizen science data and Earth observation satellites. Teja Kattenborn (University of Freiburg)
- **#54:** Latitudinal gradient patterns of Darwin's naturalization conundrum across spatial scales. Shuya Fan & Mark van Kleunen (University of Konstanz)
- **#55:** Leveraging plant and spectral traits for distinguishing tropical ecosystem types. Leon Nill (Humboldt-Universität zu Berlin)

Finished projects

Finished projects

#31: The adaptive value of xylem physiology within and across global ecoregions

ResearchNew
Phytologist

Rooting depth and xylem vulnerability are independent woody plant traits jointly selected by aridity, seasonality, and water table depth

Daniel C. Laughlin¹ , Andrew Siefert¹ , Jesse R. Fleri¹ , Shersingh Joseph Tumber-Dávila² , William M. Hammond³ , Francesco Maria Sabatini^{4,5} , Gabriella Damasceno^{6,7} , Isabelle Aubin⁸ , Richard Field⁹ , Mohamed Z. Hatim^{10,11} , Steven Jansen¹² , Jonathan Lenoir¹³ , Frederic Lens^{14,15} , James K. McCarthy¹⁶ , Ülo Niinemets¹⁷ , Oliver L. Phillips¹⁸ , Fabio Attorre¹⁹ , Yves Bergeron²⁰ , Hans Henrik Bruun²¹ , Chaeho Byun²² , Renata Ćušterevska²³ , Jürgen Dengler^{24,25} , Michele De Sanctis¹⁹ , Jiri Dolezal^{26,27} , Borja Jiménez-Alfaro²⁸ , Bruno Hérault^{29,30} , Jürgen Homeier^{31,32} , Jens Kattge^{6,33} , Patrick Meir^{34,35} , Maurizio Mencuccini^{36,37} , Jalil Noroozi³⁸ , Arkadiusz Nowak^{39,40} , Josep Peñuelas^{36,41} , Marco Schmidt⁴² , Željko Škvorc⁴³ , Fahmida Sultana⁴⁴ , Rosina Magaña Ugarte⁴⁵ and Helge Bruelheide^{6,7}

Finished projects

#46: Comparison of the global distribution of functional and phylogenetic diversity in plant communities

1 Global decoupling of functional and phylogenetic diversity in plant 2 communities

- 3 Georg J. A. Hähn^{1,2,3,*}, Gabriella Damasceno^{2,1}, Esteban Alvarez-Davila⁴, Isabelle Aubin⁵,
4 Marijn Bauters⁶, Erwin Bergmeier⁷, Idoia Biurrun⁸, Anne D. Bjorkman^{9,10}, Gianmaria Bonari¹¹,
5 Zoltán Botta-Dukát¹², Juan A. Campos⁸, Andraž Čarni^{13,14}, Milan Chytrý¹⁵, Renata
6 Ćušterevska¹⁶, André Luís de Gasper¹⁷, Michele De Sanctis¹⁸, Jürgen Dengler¹⁹, Jiri Dolezal²⁰,
7 Mohamed A. El-Sheikh²¹, Manfred Finckh²², Antonio Galán-de-Mera²³, Emmanuel
8 Garbolino²⁴, Hamid Gholizadeh¹¹, Valentin Golub²⁵, Sylvia Haider²⁶, Mohamed Z. Hatim²⁷,
9 Bruno Hérault^{28,29}, Jürgen Homeier³⁰, Ute Jandt^{1,2}, Florian Jansen³¹, Anke Jentsch³², Jens
10 Kattge^{33,2}, Michael Kessler³⁴, Larisa Khanina³⁵, Holger Kreft³⁶, Filip Kuzmič³⁷, Jonathan
11 Lenoir³⁸, Jesper Erenskjold Moeslund³⁹, Ladislav Mucina^{40,41}, Alireza Naqinezhad⁴², Jalil
12 Noroozi⁴³, Aaron Pérez-Haase⁴⁴, Oliver L. Phillips⁴⁵, Valério D. Pillar⁴⁶, Gonzalo Rivas-Torres⁴⁷,
13 Eszter Ruprecht⁴⁸, Brody Sandel⁴⁹, Marco Schmidt⁵⁰, Ute Schmiedel⁵¹, Stefan Schnitzer⁵²,
14 Franziska Schrodt⁵³, Urban Šilc⁵⁴, Ben Sparrow⁵⁵, Maria Sporbert¹, Zvjezdana Stančić⁵⁶, Ben
15 Strohbach⁵⁷, Jens-Christian Svennning⁵⁸, Cindy Q. Tang⁵⁹, Zhiyao Tang⁶⁰, Alexander Christian
16 Vibrans⁶¹, Cyrille Violle⁶², Donald Waller⁶³, Desalegn Wana⁶⁴, Hua-Feng Wang⁶⁵, Timothy
17 Whitfeld⁶⁶, Georg Zizka⁶⁷, Francesco Maria Sabatini^{3,68,†} & Helge Bruehlheide^{1,2,†}

In production in Nature Ecology and Evolution

sPlot 4.0 manuscript

sPlot 4.0 manuscript

- To be submitted to JVS
- First round of reviews soon
 - likely November

sPlot 4: towards a truly global database for understanding vegetation spatiotemporal changes

Running title: Updated version of sPlot with time-series data

Gabriella Damasceno^{1,2,*} (<https://orcid.org/0000-0001-5103-484X>)

Georg Hähn^{2,1,3} (<https://orcid.org/0000-0003-3733-1498>)

Francesco Sabatini³ (<https://orcid.org/0000-0002-7202-7697>)

Helge Brügelheide^{2,1} (<https://orcid.org/0000-0003-3135-0356>)

[ALL SPLOT MEMBERS]

¹ German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany

² Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle, Germany

³ BIOME Lab, Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum University of Bologna, Bologna, Italy

To-do list

To-do list

- Work on partnerships with data aggregators

To-do list

- Work on partnerships with data aggregators
- Enhance the usage of sPlot as a tool for science-based global policies, like the IPBES platform

To-do list

- Work on partnerships with data aggregators
- Enhance the usage of sPlot as a tool for science-based global policies, like the IPBES platform
- sPlotOpen 2: Plots balanced by vegetation types

To-do list

- Work on partnerships with data aggregators
- Enhance the usage of sPlot as a tool for science-based global policies, like the IPBES platform
- sPlotOpen 2: Plots balanced by vegetation types
- sPlotOpenR – Check poster P1-B 20

Check out poster P1-B 20!

sPlotOpenR: an R package for accessing and working with the open versions of sPlot

 iDiv
 German Centre for Integrative
 Biodiversity Research (iDiv)
 Halle-Jena-Leipzig

MARTIN-LUTHER-UNIVERSITÄT
 HALLE-WITTENBERG

Gabriella Damasceno^{1,2,*}, Francesco Sabatini^{3,4}, Georg Hähn³,
 Helge Brügelheide^{2,1}, Daniel Laughlin⁵, Andrew Siefer⁶

¹ German Centre for Integrative Biodiversity Research, Germany; ² Martin-Luther University, Germany; ³ University of Bologna, Italy;

⁴ Czech University of Life Sciences, Czech Republic; ⁵ University of Wyoming, USA; ⁶ Cornell Statistical Consulting Unit, USA

* gabriella.damasceno@idiv.de

sPlotOpen

- Released in 2021
- Based on sPlot 2.1 (2016)
- Environmentally balanced
- 95,104 plots
- 42,677 vascular taxa
- Functional data: CWM and CWV

Figure 1. Density of vegetation plots in 70,000 km² cells

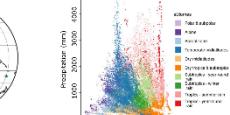
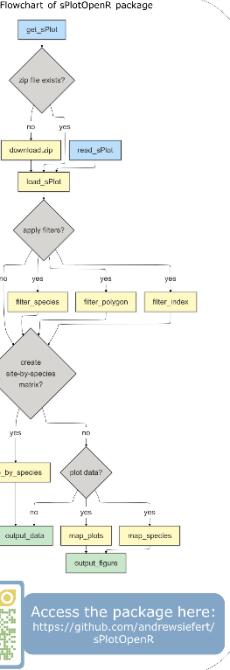
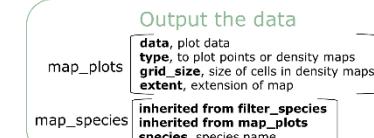
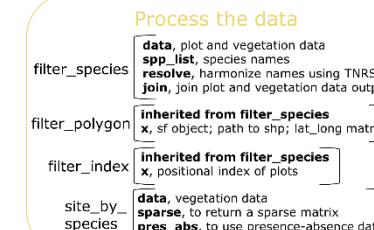
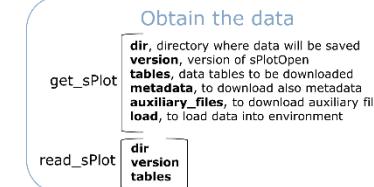






Figure 2. Distribution of plots in the climatic space

sPlotOpenR

Potential projects

Potential projects

- Biodiversity analysis at multi-trophic level, integrating pollinators, herbivores, and soil organisms.

Potential projects

- Biodiversity analysis at multi-trophic level, integrating pollinators, herbivores, and soil organisms.
- Development of new metrics to describe community-level data considering changes in species abundance through time as Jandt and collaborators (2022).

Potential projects

- Biodiversity analysis at multi-trophic level, integrating pollinators, herbivores, and soil organisms.
- Development of new metrics to describe community-level data considering changes in species abundance through time as Jandt and collaborators (2022).
- More applied approaches taking anthropogenic factors into account

Potential projects

- Biodiversity analysis at multi-trophic level, integrating pollinators, herbivores, and soil organisms.
- Development of new metrics to describe community-level data considering changes in species abundance through time as Jandt and collaborators (2022).
- More applied approaches taking anthropogenic factors into account

Anyone interested in leading it?

Thank you for your collaboration!

Any new ideas? Comments?

www.idiv.de/en/splot

@sPlot-iDiv

gabriella.damasceno@idiv.de

Please approach me if you have questions!