Comments on CBD/WG2020/2/3

ZERO DRAFT OF THE POST-2020 GLOBAL BIODIVERSITY FRAMEWORK

With this submission, we respond to CBD notification 2019-108. Following up on the zero draft of the post-2020 global biodiversity framework (CBD/WG2020/2/3, "*Zero draft*" hereafter) presented by the Open Ended Working Group on the Post-2020 Global Biodiversity Framework in preparation for its second meeting in Rome, Italy, from February 24-29 2020, we wish to

- *i)* provide recommendations regarding the implementation of the framework, addressed, mainly in sections E. through H. of the *Zero draft*,
- *ii)* provide comments on specific goals and targets suggested in the Zero draft.

The comments and recommendations we provide here are based on important advances in the field of biodiversity research and were developed by an international group of over 50 experts (see Annex for a list of contributors) during a two-day workshop hosted by the German Centre for Integrative Biodiversity Research (iDiv) Halle, Jena, Leipzig, Germany.

i) Recommendations regarding the implementation of the framework

Assessments taking stock of the progress made towards the Aichi targets of the current global biodiversity framework reveal a sobering picture¹. Most targets have not been met and in some cases biodiversity trends have worsened. One reason for this failure is the lack of appropriate implementation of actions promoting the manifold facets of biodiversity. Implementation gaps and obstacles occur at several geographic (i.e. global, national, local) and organizational (i.e. individual, institutional, governmental) levels. Gaps include lack of accountability, lack of clear action plans, insufficient integration of social capital and stakeholder participation, insufficient integration of biodiversity values across sectors (mainstreaming), lack of policy coherence, and insufficient enforcement of existing legislation. The gap between strategies, actions, and responses needs to be reduced through accountability across sectors (biodiversity mainstreaming), legislation (legal power) and reporting (improved monitoring). In order to address this shortcoming, we recommend a three-step framework that should guide the implementation of the 2030 targets and 2050 goals for biodiversity. We also propose associated targets and indicators.

Step 1: Identify actions and responsibilities for all scales and sectors.

Biodiversity conservation should be mainstreamed as a way to reach SDGs and other international agreements. Mainstreaming is needed across governmental departments and key economic sectors, from the city scale to the supranational scale. Biodiversity, or at least, reduction of negative impacts on biodiversity should be an objective of sectoral strategies, including in production sectors such as agriculture, fisheries and forestry, but also other sectors, e.g. transport, extractive industries etc. Therefore stakeholders at different levels in different sectors should identify the actions they need to take to contribute to the 2030 targets and goals. This identification should recognize the multiple values of biodiversity to people and take into account barriers and other (complementary or conflicting) policies requiring change. Methods to identify actions include positive future visioning and transformative pathways examination through participatory stakeholder engagement methods (including decision makers, scientists, local knowledge holders, businesses) for context and place specific biodiversity actions. National biodiversity platforms can play a key role in this process. By 2023, revised NBSAPs

¹ e.g., IPBES Global Assessment Report, 2019; IPBES Assessment Report on Land Degradation and Restoration, 2018

should describe sector specific-biodiversity actions and commitments and their expected contribution to global targets.

Suggested indicators: 1) Number of national sectoral strategies/programmes that consider the value of biodiversity and their contribution to biodiversity conservation. 2) Share of businesses with biodiversity management plans. 3) Quantification of direct and indirect biodiversity impacts of all sectors, including telecoupling, using a systems approach²;

Step 2: Take actions and create ownership

Stakeholders need to implement the planned actions and a supporting environment for those needs to be created. For example, legislation should ensure integrated planning processes and conservation finance mechanisms could support the economic viability of biodiversity sound businesses. Accountability for the different stakeholders in each country needs to be implemented by rewarding stakeholders that have implemented their commitments and penalizing those that have not. Fiscal policy can be an important tool to implement accountability mechanisms in countries, for instance in fiscal transfers to municipalities or in taxation of businesses. The implementation of the strategic plan and targets/goals in NBSAPs need to be reported in subsequent National Reports (NRs). This requires continuity between the NBSAPs and NRs for monitoring and evaluation over time. At the international level, accountability mechanisms could also be considered, through access to GEF funding and World Bank loans.

Suggested indicators: 1) Proportion of actions planned already implemented by each stakeholder; 2) Proportion of fiscal transfers modulated by biodiversity performance; 3) Expected improvement on biodiversity based on actions already implemented for each sector;

Step 3: Assess biodiversity impacts

Temporal change in species composition and numbers depend on spatial scale, and particularly on grain and extent. The change includes species gains, invasions, losses, extinctions, extirpations, temporal turnover, and changes in spatial beta diversity. For example, a systematic loss of diversity at local sites can be disconnected from the loss at regional or global scales. Yet, biodiversity data and monitoring do not yet cover a representative sample of ecosystems as well as biodiversity facets. National biodiversity monitoring programs should be implemented to assess and report biodiversity impacts of the actions taken. Those programs should have appropriate taxonomic depth, be carried out over representative spatial and temporal scales, across ecosystems and across multiple facets of biodiversity. Such programs can be supported by novel and innovative methods for monitoring biodiversity change, such as Big Data and remote sensing. It is important that monitoring programs results are comparable across countries and that the data can be aggregated or disaggregated to sub-national, regional and global scales. Those data should be made publicly available through data repositories such as GBIF. Implementation could be facilitated by bodies such as GEO BON and IUCN. Because there is a delay between actions and biodiversity response, models to project the potential impact of conservation actions should be part of the monitoring systems. Models can also help fill temporal, spatial and taxonomic gaps. Progress realized or projected towards the 2030 and 2050 goals should be assessed and additional actions implemented when needed.

Suggested indicators: 1) Number of parties with nation biodiversity monitoring schemes, and number of taxa and facets of biodiversity monitored; 2) Proportion of monitoring data publically available; 3) Comparison between expected and actual improvement of biodiversity.

² Marques, A., et al (2019) Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. *Nature Ecology & Evolution*, **3**, 628–637.

ii) Recommendations for specific goals, targets and indicators suggested in the Zero draft

In Table 1 we provide recommendations regarding specific goals and targets. We base our recommendations on recent and relevant scientific findings and provide suggestions for modification of the targets, possible indicators and recommendations for implementation. For further reference, we also provide links to relevant scientific literature. Importantly, we chose to consider only those goals and targets addressing areas of our expertise. This choice is not intended to imply higher priority of the addressed issues over those that were not addressed here.

Zero draft goal/target number	New scientific findings / rationale	Proposed changes to zero draft goals/targets	Additional indicators proposed	Recommendations for implementation	References
Appendix 1. Monitoring framew	vork 2030 and 2050 goals				
(a) No net loss by 2030 in the area and integrity of freshwater, marine and terrestrial ecosystems, and increases of at least [20%] by 2050, ensuring ecosystem resilience	 In addition to a percentage of area, species behaviour, habitat quality and ecological processes are important for ecosystem resilience and should be protected (eg. incl species composition or role of megafauna on biodiversity change) (1, 2, 3, 4,5). Soil biodiversity is crucial for a plethora of ecosystem functions and services. Notably, recent research highlights that the distribution of soil biodiversity globally significantly differs from plants and aboveground taxa (e.g. 6-10); this needs to be considered when assessing biodiversity and designing new protected areas (7) 	" ensuring ecosystem resilience and functioning"	This is connected to Target 1 and could also be assessed with the bidimensional rewilding score (Torres et al. 2018)	To avoid replacement of high quality habitats with low quality habitat, compensation and offsetting should be done with comparable, and equally high quality areas (11). For instance, protection of old-growth forest cannot be replaced by forestry areas.	1. Visconti et al. (2019), https://science.sciencemag.org/content/36 4/6437/239/tab-pdf 2. Young et al. (2016) https://doi.org/10.1146/annurev-ecolsys- 112414-054142 3. Niner et al. (2018) https://doi.org/10.3389/fmars.2018.00053 4. Bull et al. (2014) https://doi.org/10.1111/cobi.122431. 5. Torres et al., 2018, https://royalsocietypublishing.org/doi/full /10.1098/rstb.2017.0433 6. Tedersoo et al (2014) https://science.sciencemag.org/content/34 6/6213/1256688.full 7. Cameron et al. (2919) https://doi.org/10.1111/cobi.13311 8. Eisenhauer & Guerra (2019) 10.1038/d41586-019-02197-0 9. Philipps et al. (2019) 10.1126/science.aax4851 10. Eisenhauer et al. (2019) https://doi.org/10.1038/s41467-018- 07916-1 11. Gonçalves, et al (2015) https://doi.org/10.1016/j.cosust.2015.03.0 08

(b) The percentage of species	1) Current global extinction rates	By 2030 the population	Several Essential	1) The status of biodiversity	1. Rosenberg et al. (2019),
threatened with extinction is	in select vertebrate taxa have been	sizes of functionally	Biodiversity Variables	should be monitored including the	10.1126/science.aaw1313
reduced by [X%] and the	confirmed to exceed background	relevant species have	based indicators are	status of non-threatend species	2. Barnosky et al. (2011),
abundance of species has	rates (1-5) 2) Significant range	stabilized and by 2050	developed by the GEO	This is important specifically in	https://doi.org/10.1038/nature09678
increased on average by [X%] by	contractions have been observed or	the curve loss of	BON community and	underrepresented areas and at	3. Alroy (2015)
2030 and by [X%] by 2050 .	predicted into the near future for	taxonomic genetic	described in (17)	underrepresented taxonomic level	10.1073/pnas.1508681112
2050 and by [2070] by 2050,	some taxa $(6-9)$ 3) Local	functional and		(soil organisms microorganisms)	4. Ceballos et al. (2015)
	extinctions and range shifts due to	interaction diversity is		2) Implementation of general	2015(1:e1400255) 5. Pimm et al. (2014)
	climate change have already been	bent unwards at local		monitoring schemes is needed	10 1126/science 1246752
	documented 4) Disproportionate	regional and global		including the development of	6. La Sorte & Jetz (2010)
	losses have been observed or	scales		automated (sensor) systems 3)	10.1098/rspb.2010.0612
	predicted for large organisms and	seares.		Increase funding on soil	7. Wolf & Ripple (2017),
	trophically anex species (10-12)			hiodiversity monitoring	http://dx.doi.org/10.1098/rsos.170052
	5) Importantly, populations of			bloch versity monitoring.	8. Wiens (2016)
	common and moderately common				10.13/1/journal.pbio.2001104.
	species are also declining (at least				10.1098/1808.1/0032. 9 Powney et al (2019)
	in Furone and North America)				https://doi.org/10.1038/s41467-019-
	leading to a decline in total number				08974-9,
	of individuals and biomass (13) 6)				10. Lindenmayer et al (2012)
	Both local extirpations and local				10.1126/science.1231070
	colonisations are accelerating				11. Estes et al. (2011)
	(14) 7) Only a minor fraction of				10.1126/science.1205106,
	total soil biodiversity has been				12. Schweiger & Svenning (2019)
	described (e.g. $\sim 0.2-2\%$ of all soil				10.1002/pan5.10066 12. Posenberg, $K V$ et al. (2010)
	nematodes) and now the first soil				https://doi.org/10.1126/science.aaw1313
	taxa are considered on IUCN red				14 Dornelas et al (2019)
	list (15.16) shallonging surront				https://doi.org/10.1111/ele.1324215.
	his (13,10), chancinging current				Phillips et al. (2017) 10.1038/s41559-
	biodiversity assessments.				017-0103
					16. Eisenhauer et al. (2019)
					https://doi.org/10.1038/s41467-018-
					$\frac{07916-1}{17}$
					1 /. Kim et al (2018). https://doi.org/10.5104/gmd_11_4537
					2018
(c) Genetic diversity is	A focus on soil biodiversity is				2010
maintained or enhanced on	highly promising given the focus				
average by 2030 and for [90%]	on next-generation sequencing				
of species by 2050	approaches in this field				
or species of 2000.	approaches in this field.				

(d) Nature provides benefits to people contributing to (i) Improvements in nutrition for at least [X million] people by 2030 and [Y million] by 2050;(ii) Improvements in sustainable access to safe and drinkable water for at least [X million] people, by 2030 and [Y million] by 2050;(iii) Improvements in resilience to natural disasters for at least [X million] people by		Several indicators have been proposed by the InVEST team which address this target well (1)		1. Chaplin-Kramer, R. et al (2019) 10.1126/science.aaw3372
2030 and [Y million] by 2050;(iv) At least [30%] of efforts to achieve the targets of the Paris Agreement in 2030 and 2050.				
(e) The benefits, shared fairly and equitably, from the use of genetic resources and associated traditional knowledge have increased by [X] by 2030 and reached [X] by 2050.		Not discussed during the w	vorkshop	

Appendix 2. 2030 action targets					
Reducing threats to biodiversity					
1. Retain and restore freshwater, marine and terrestrial ecosystems, increasing by at least [50%] the land and sea area under comprehensive spatial planning addressing land/sea use change, achieving by 2030 a net increase in area, connectivity and integrity and retaining existing intact areas and wilderness.	1) Functional diversity and species interactions (e.g. pollination, pest control, mycorrhization) are important for ecosystem functions and services and contribute to ecological restoration (1, 2); 2) Rewilding has large potential for ecological restoration as this supports three key processes: trophic complexity, stochastic disturbances, and dispersal (3); 3) Restoration success is not only strongly limited by dispersal limitation, connectivity is also key factor that should be taken into account while defining the restoration objectives (3,4). 4) Ecological restoration needs a multiscale approach combining local and large scale areas (3,4). The diversity of biotic interactions, drive ecosystem multifunctionality (5)	Re-formulate to include ecosystem functioning: "achieving by 2030 a net increase in area, including integrity and connectivity of biodiversity contributions to ecosystem functioning, and retaining existing intact areas and wilderness.	 Bi-dimensional rewilding score (6) 2) Restoration index or recovery completeness (8,9). 3) Evaluation of successional trends (7). Functional connectivity (4), including between target species in restoration initiatives. 	1) Standards for ecological restoration need to be established that ensure ecosystem resilience (e.g., number of species, number of functional types, functional diversity). These standards should apply to all ecosystems, including land managed for agriculture, forestry and urban areas. 2) Implement structured monitoring before and after restoration to gain better understanding and reporting of actual changes. 3) Apply an operational framework for rewilding in order to design, evaluate and measure rewilding intitatives and projects (3,6).	1. Jordano (2016), doi:10.1371/ journal.pbio.1002559 2. Kaiser-Bunbury et al. (2017), doi: 10.1038/nature21071 3. Perino et al. 2019, https://science.sciencemag.org/c ontent/364/6438/eaav557019. 4. Volk et al (2018) https://link.springer.com/article/1 0.1007/s10980-018-0611-6 5. Hines et al. (2015) https://doi.org/10.1016/bs.aecr.2 015.09.001 6. Torres et al., 2018, https://royalsocietypublishing.or g/doi/full/10.1098/rstb.2017.043 3 7. Prach & Walker (2018)https://besjournals.onlineli brary.wiley.com/doi/full/10.1111 /1365-2745.13078 8. Prach et al. (2019),https://doi.org/10.1111/re c.13011 9. Jones et al (2018) https://doi.org/10.1098/rspb.2017 .2577

2. Protect sites of particular	1) Privately owned areas	Re-formulate to	1. Outcome based	1) appropriate management of protected	1. Shumba et al (2020
importance for biodiversity through	have great potential to	include ecosystem	indicators have been	areas, with major focus on restoring self-	https://doi.org/10.1016/j.gecco.2
protected areas and other effective	protect biodiversity (1)	functioning: Protect	proposed by (3) and (4).	regulating complex, biodiverse	020.e00935,
area-based conservation measures, by	2) Integrity of protected	sites of particular	2. Area under different	ecosystems. 2) compensation for habitat	https://www.sciencedirect.com/s
2030 covering at least [60%] of such	areas needs to be secured, to	importance for	types of protected areas	loss. 3) incentives to protect biodiversity	cience/article/pii/S23519894203
sites and at least [30%] of land and sea	reduce their fragmentation	biodiversity and	(e.g. I-III and IV-VI).	outside-protected areas and in privately	00342
areas with at least [10%] under strict	e.g. by roads and other	ecosystem function		owned land (1).	2. Ibisch et al. (2016)
protection.	infrastructure (2).	through protected areas			10.1126/science.aaf7166
	3) Different types of	and other effective			3. Leberger et al. (2019)
	protected areas have	area-based			https://doi.org/10.1016/j.biocon.
	different effectiveness (3)	conservation measures,			2019.108299
	4) Outcome based indicators	by 2030 covering at			4. Visconti et al.
	for protected areas can be	least [x%] of such sites			(2019), https://science.sciencema
	more effective than generic	and at least [x%] of			g.org/content/364/6437/239/tab-
	aerial targets (4)	land and sea areas with			pdf
		at least [x%] under			
		strict protection.			

3. Control all pathways for the	1) Non-native species of	1) Halting the loss of	Indicator with global	1) Assess invasive species according to	1. Seebens et al. (2017)
introduction of invasive alien species,	several taxa increase in	biodiversity caused by	coverage specifying an	threat and high threat levels should be	https://doi.org/10.1038/ncomms1
achieving by 2030 a [50%] reduction	numbers per region over	invasive alien species	xx% reduction compared	prioritzed for removal/prevention.2)	<u>4435</u>
in the rate of new introductions, and	time (1). 2) Human activities	by 2030, by preventing	to a baseline period (e.g.	Stricter regulations and control of	2. Seebens et al. (2015)
eradicate or control invasive alien	(modifying habitats, climate	their impacts in [100%	2000-2020) as 1) number	use/imports of invasive species (e.g. for	https://doi.org/10.1111/gcb.1302
species to eliminate or reduce their	change, trade and transport)	of] the most vulnerable	of species introductions	agriculture, gardens, pets, pest control,	<u>1</u>
impacts by 2030 in at least [50%] of	translating to both propagule	areas, regulating [50%	per region over time, and	etc) 3) implementation of monitoring	3. Winter et al. (2009)
priority sites.	and colonization pressure are	of] the most harmful	2) Impact of known	schemes, especially at ports/trade hubs	https://doi.org/10.1073/pnas.090
	much more important than	invasive alien species,	invasive species per	4)The status of biodiversity incl invasive	<u>7088106</u>
	the characteristics of species	and effectively	region over time.	species should be consistently monitored	4.Vila et al. (2011)
	for invasions (2). 3) Species	managing [50% of] the	3) Spread, impact and	(incl. microrganism and	https://doi.org/10.1111/j.1461-
	introductions in combination	most significant	interventions EBV	underrepresented habitats such as soils).	<u>0248.2011.01628.x</u>
	with extinctions can decrease	pathways of	indicator framework (7)		Shirmel et al. (2012)
	phylogenetic diversity at a	introduction, such that			https://doi.org/10.1007/s10530-
	national/regional scale while	their impacts are			<u>012-0352-4</u>
	increasing species richness	reversed through			5. Gillings et al. (2014)
	(3). 4) Alien species can	restoration and			https://doi.org/10.1111/gcb.1282
	cause changes in	recovery by 2050. 2) A			<u>3;</u>
	composition and diversity of	new target on climate			Auer & King (2014)
	different biodiversity facets	change should also			https://doi.org/10.1111/geb.1217
	(taxonomic, functional,	include preventing			<u>4</u>
	phylogenetic) (4). 5)	range expansions of			6. Bebber et al. (2015)
	Poleward and latitudinal	pest species from			https://doi.org/10.1146/annurev-
	range expansions due to	warmer regions.			phyto-080614-120207
	climate change are now				7. McGeoch, M. and Jetz, W.
	ubiquitous (5), including				(2019)
	agricultural pests and disease				https://doi.org/10.1016/j.oneear.2
	vectors (6).				019.10.003

4. Reduce by 2030 pollution from excess nutrients, biocides, plastic waste and other sources by at least [50%].	1) Pollution, including "invisible" forms and their combinations (e.g. microplastic, organic micropollutant mixtures including pesticides, pharmaceutical and personal care products (PPCP)(1-6), illegal drugs (7), etc.), has important consequences for both human health and biodiversity. 2) Most studies use single substances, but their toxicity will depend on combined effects in realistic concentrations in the environment.	Target should be more specific, enlisting key sources of pollution that have to be mapped and significantly reduced by 2030.	1) List of key sources of pollution. 2) Quantification of each pollutant; 3) Change in the rate of pesticide use (aquatic ecosystem): eg. SPEAR index (9); 4) Change in amount of other pollutants (micropollutants in water): Lines of evidence (LOEs) that provide complementary evidence on the presence and potential ecological impact of complex chemical pollution (10).	1) Assessing micropollutant complex mixtures in waterbodies: a) identify relevant contaminants, b) assess the impact of contamination in aquatic ecosystems, c) quantify cause–effect relationships between contaminants and adverse effects (10); using i) component-based methods that allow a predictive mixture risk modeling; ii) effect-based methods; iii) in situ tests; iv) field-derived species inventories (11).	1. Hölker et al 2010 https://besjournals.onlinelibrary. wiley.com/doi/full/10.1111/j.136 5-2664.2012.02212.x 2. Barra Caracciolo et al (2015) J Pharm Biomed Anal 106:25-36. 3. Rehman, et al (2015). Chemosphere, 138, 1045-1055. 4. Cizmas et al. (2015) https://doi.org/10.1007/s10311- 015-0524-4 5. Ebele et al. (2017). https://doi.org/10.1016/j.emcon.2 016.12.004 6. Grenni et al. (2018) https://doi.org/10.1016/j.microc. 2017.02.006 7. Bartrons & Peñuelas (2017). Trends in Plant Science 22(3):194-203. 8. Pal et al. (2013). Science of the Total Environment, 463, 1079-1092. 9. Beketov et al. (2009) https://doi.org/10.1016/j.envpol. 2009.01.021. 10. Altenburger et al. (2019) https://doi.org/10.1186/s12302- 019-0193-1
					2009.01.021. 10. Altenburger et al. (2019) https://doi.org/10.1186/s12302- 019-0193-1 11.Backhaus et al. (2019). https://doi.org/10.1186/s12302- 019-0276-z
5. Ensure by 2030 that the harvesting, trade and use of wild species, is legal and at sustainable levels.		1	Not discussed during	g the workshop	

6*. Contribute to climate change	1) Ecological restoration can	1) Climate change	1) Invest in peatland and wetland	1.Bronson et al. (2017)
mitigation and adaptation and disaster	be used as a tool, target and	mitigation indicators	conservation and restoration.	https://www.pnas.org/content/11
risk reduction through nature-based	objective for sustainable	(e.g. tCO2eq avoided	2) Restore degraded soils for food	4/44/11645
solutions providing by 2030 [about	development, nature based	emissions per ha; tC	security	2. Jørgensen (2015)
30%] [at least XXX MT CO2=] of the	solutions (1), climate	stored per ha) including	3) Restore degraded areas to reduce risk	https://www.ecologyandsociety.o
mitigation effort needed to achieve the	mitigation and adaptation,	indicators from soil	of natural disasters	rg/vol20/iss4/art43/
goals of the Paris Agreement,	carbon sequestration and	systems (e.g. soil	4) Climate and biodiversity goals should	3. Kabisch et al. (2017)
complementing stringent emission	biodiversity conservation (4)	respiration rate, litter	be aligned and adapted to the particular	https://www.springer.com/de/bo
reductions, and avoiding negative	2) Peatland conservation	decomposition) (7, 8).	challenges of sectors in order to build	ok/9783319537504.
impacts on biodiversity and food	and restoration is urgent to	2) Indicators relevant for	cross-sectoral synergies and avoid trade-	4. Kabisch et al. (2016)
security.	avoid dramatic carbon losses	adaptation: water cycle	offs.	http://dx.doi.org/10.5751/ES-
	from degrading areas (5)	(e.g. water retention;	5) Intelligent solutions for integrated	08373-210239
	3) Climate adaptation	nutrient retention; water	combination of Nature-based solutions	5. Bonn et al. (2016)
	through nature-based	quality; etc.) soil	and grey insfrastructure for CC	10.1017/CBO9781139177788.02
	solutions applies especially	protection and erosion	adaptation in cities need to be found	1
	to wetlands and urban areas,	control.	6) Monitoring should (also) be	6. Pe'er et al. (2019)
	here biodiversity can form a	3) Biodiversity indicators	performed by sectors such as agriculture,	10.1126/science.aax3146
	solution. Also for forestry	(species composition,	forestry, water.	
	and agriculture, nature-based	native species, etc.).		
	solutions are critical for			
	enhanicng the contribution of			
	these sectors to climate			
	change mitigation and			
	building resilience of these			
	sectors to climate change			
	impacts.			
	4) The agricultural sector			
	needs to reduce greenhouse			
	gas emissions (6).			

Meeting people's needs through sustainable use and benefit-sharing**							
7. Enhance the sustainable use of wild species providing, by 2030, benefits, including enhanced nutrition, food security and livelihoods for at least [X million] people, especially for the most vulnerable, and reduce human-wildlife conflict by [X%].			Not discussed d	uring the workshop			
8. Conserve and enhance the sustainable use of biodiversity in agricultural and other managed ecosystems to support the productivity, sustainability and resilience of such systems, reducing by 2030 related productivity gaps by at least [50%].	The concept of "sustainable intensification" (SI) has recently been questioned and revisited (1-3) given insufficient evidence that SI is truly reachable. Beyond local successes, the concept usually leads to intensification. While yield gaps do exist, there is also clear indication of over- rather than under- production.	This target may need to be carefully re- assessed to include a precautious addition of "productivity gaps" where these hamper self-sustainability and can be addressed without enhancing anthropogenic pressures and loss of natural habitats (e.g. small-scale landscape features)".	Land-cover and Land-use indicators, combined with yield and income data, may offer efficient indicators to assess impacts of agriculture and avoid intensification and loss of natural landscape features.	Implementation of this target requires identifyig target areas (e.g. comparing yield gap mapping with biodiversity-richness and hotspot mapping) and accompanying them by development of detailed development programmes, support- funding and long term monitoring to ensure success of such programs.	1. Cook, et al. (2015) https://pubs.iied.org/pdfs/14651IIED.pdf 2. Mahon, et al. (2017) https://doi.org/10.1016/j.ecolind.2016.11.001 3. Smith et al. (2015) https://doi.org/10.1016/j.geoforum.2015.03.017		
9. Enhance nature-based solutions contributing, by 2030, to clean water provision for at least [XXX million] people.			Not discussed d	uring the workshop	1		

10. Enhance the benefits of green spaces	1) Biodiversity can	1) By 2030, countries	1) WHO accessibility	For indicator 1) Ensure	1. Hunter et al 2019
for health and well-being, especially for	contribute to	have [doubled] the per-	indicators to greenspace that	accessibility to nature	https://link.springer.com/chapter/10.1007/978-3-
urban dwellers, increasing by 2030 the	mental and	capita access of urban	meets certain ecological and	for humans living in	030-02318-8 17).
proportion of people with access to such	physical health (1-	green to urban	social standards [e.g. UK	urban environments in	2. WHO&CBD report (2015)
spaces by at least [100%].	9). 2) Contact with	citizens.2) Enhance the	green flag award]. 2). Social	daily life, and	https://www.who.int/globalchange/publications/biod
	nature can faciliate	benefits of green	interventions to increase use	sufficient exposure to	iversity-human-health/en/;
	pro-environmental	spaces for health and	of urban green space (e.g.	nature in terms of dose	3. Aerts et al (2018) British Medical Bulletin
	behaviours (10)	well-being derived	Number of school field trips,	and nature-quality	https://doi.org/10.1093/bmb/ldy021;
		from clean air	creation of a national health	(biodiverse, quiet, etc)	4. Lovell et al (2014) Toxicology Health & Env
		provision, regulation	walk programme).3) Area of	(11, 12). For indicator	Health doi:10.1080/10937404.2013.856361;
		of extreme	publicly accessible green	2) facilitate use or	5. Dallimer et al (2012) BioScience
		temperatures and	space per person. 4) Cities	contact with biodiverse	https://doi.org/10.1525/bio.2012.62.1.9;
		opportunities for	green space exposure (%	natural environments	6. Marselle, et al. (2019)
		outdoors recreation,	green area) 5) Urban	for children who live in	https://link.springer.com/book/10.1007/978-3-030-
		especially for urban	planning include co-benefits	urban environments	02318-8 ;
		dwellers, by	of biodiverse greenspaces for	(e.g. 1 week school	7. IEEP (2017) https://ieep.eu/publications/new-
		increasing by 2030 the	human health into health	trips to nature areas;	study-on-the-health-and-social-benefits-of-
		area of urban green	programmes and planning	Daily Green Mile (see	biodiversity-and-nature-protection;
		space per capita and	decisions.	Scotland))biodiversity	8. Engemann et all (2019) http://bit.ly/gremenPNAS
		by increasing the		benefits are included in	9. White, M.P., et al. (2019) 10.1038/s41598-019-
		proportion of people		teaching curricula) 3)	44097-3
		with access to such		public health	10. Alcock et al (2019)
		spaces by at least		professional and city	https://www.sciencedirect.com/science/article/pii/S0
		[100%].		planners know about	160412019313492?via%3Dihub
				and include co-benefits	11. WHO report (2017)
				of biodiverse	http://www.euro.who.int/en/health-
				greenspaces for human	topics/environment-and-health/urban-
				health into health	12. The Access to Natural Green Space Standard.
				programmes and	https://webarchive.nationalarchives.gov.uk/2014060
				city/landscape	5111422/http://www.naturalengland.org.uk/regions/e
				planning decisions.	ast_of_england/ourwork/gi/accessiblenaturalgreensp
					acestandardangst.aspx
11. Ensure that benefits from the		Re-formulate to	Proportion FAIR and open	Sequences should be	
utilization of genetic resources, and related		address data standards	access data (global and	Open access	
traditional knowledge, are shared fairly		(FAIR, open-access)	national)		
and equitably, resulting by 2030 in an [X]					
increase in benefits.					

Tools and solutions for implementation and mainstreaming							
12. Reform incentives, eliminating the	1) Harmful	1) Relevant targets		1) Implement coherent	1. Pe'er et al. 2019, Science		
subsidies that are most harmful for	subsidies or	need to be formulated		policies and harmonise	2. Benra et al (2019)		
biodiversity, ensuring by 2030 that	subsidies with	that allow fiscal		policies on different	https://doi.org/10.1016/j.landurbplan.2019.103589		
incentives, including public and private	undesirable	systems to internalize		levels (International,	3. Eisner et al. (2016)		
economic and regulatory incentives, are	impacts on	biodiversity in our		Regional, National	https://www.sciencedirect.com/science/article/abs/pi		
either positive or neutral for biodiversity.	biodiversity are a	economy. 2) Market		levels). 2) Develop and	i/\$000632071630060X		
	risk (1-5). For	prices in all economic		implement binding	4. Sumaila et al. (2019)		
	example,	sectors are corrected to		policies (e.g. policies	https://doi.org/10.1016/j.marpol.2019.103695		
	supporting policies	reflect biodiversity		based on the	5. https://www.cbd.int/doc/publications/cbd-ts-56-		
	to meet the	values in private		precautionary principle	en.pdf		
	increasing demand	decision making.		and polluter pay			
	for bioenergy are			principle). 3)			
	posing risks to			Internalise cost on the			
	biodiversity. 2)			environment of			
	Climate change			different activities. 4)			
	mitigation			Non-internalisation of			
	measures need to			actions that have			
	be streamlined			negative impact on the			
	with biodiversity			environment (ex:			
	targets to avoid			pollution is acting			
	negative impacts.			indirectly as a subsidy			
	While climate			(TEEB). 5) Eliminate			
	change mitigation			or reform harmful			
	debates bring up a			subsidies. 6) Create			
	need to streamline			positive economic			
	climate in our			incentive for			
	taxation system,			conservation and			
	internalization of			sustainable use of			
	biodiversity in our			resources. 7)			
	economy is not yet			Implement also			
	done. 3) Growth-			coercion and regulation			
	oriented economy,			enforcement.			
	endorsed by						
	national and						
	international						
	agreements,						
	conflicts with						
	biodiversity						
	protection aims.						

13. Integrate biodiversity values into	1) Multiple non-	Include into target: 1)	1) Financial incentives are	1) Countries start a	1. SEA-EEA (2014)
national and local planning, development	market benefits of	multiple biodiversity	aligned with biodiverity	dialogue process to	https://seea.un.org/content/natural-capital-and-
processes, poverty reduction strategies and	biodiversity	values and ecosystem	benefits in all economic	define a legally	ecosystem-services-faq
accounts, ensuring by 2030 that	(insurance value,	services (ES)/nature	sectors; 2) countries have	binding concept of	2. TEEB (2018).
biodiversity values are mainstreamed	regulating services,	contributions to people	adopted a widely accepted	biodiversity values 2)	http://teebweb.org/agrifood/measuring-what-matters-
across all sectors and that biodiversity-	recreation,	(NCP) to be fully	and binding biodiversity	Countries evaluate	in-agriculture-and-food-systems/
inclusive strategic environmental	existence values,	reflected in national	value concept; 3) all	processes in	
assessments and environmental impact	etc) play an	accounts, national	countries have implemented	government decision	
assessments are comprehensively applied.	important role in	planning and	natural capital accounting	making affecting	
	biodiversity	governmental decision	(following the SEEA-EEA	biodiversity; 3)	
	conservation. 2)	making and spendings.	framework (1)) and include	Countries list all	
	There is increasing	2) nature based	biodiversity values in	biodiversity harmful	
	scientific	solutions and	planning process and social	subsidies and their	
	knowledge on the	biodiversity-enhancing	cost-benefit analysis; 4)	financial amount to	
	trade-offs and	activities are	countries have removed	enable a monitoring of	
	synergies between	supported.	disincentives (including	their phase-out; 4)	
	these multiple non-		subsidies) for biodiversity-	Countries continue the	
	market benefits. 3)		friendly forestry and	development of natural	
	Effective		farming; 5) Biodiversity	capital accounts. 5)	
	implementation of		checks at legislative levels	Implementation	
	biodiversity policy		for all sectors using a	facilitated by	
	requires		systems approach as	supranational bodies	
	mainstreaming		recommended by TEEB for	(UN, EU, etc.) and	
	accross		Agriculture and Food (2). 6)	incorporated into	
	governmental		Existence of legislation	(sub)-national as well	
	ministries and key		foreseeing integrated land-	as supra-national laws,	
	economic sectors.		use planning / or more	regulations, treaties	
			broadly, integrated planning	and policies. 6)	
			processes. 7) Quantify	Holistic policies to be	
			indirect biodiversity impacts	implemented across	
			of different sectors (e.g.	ministries. /) Specific	
			transport via land occupation	sectoral strategies, i.e.	
			for initiastructure and	blodiversity	
			associated emissions). 8)	conservation should be	
			National sectoral	discussed in the	
			strategies/programmes that	agricultural, lisheries,	
			biodiversity and their	and totestiy	
			contribution to biodiversity	other 8) Strengthening	
			conservation (0) Biodiversity	the co design of	
			footprint of sectors and	management and	
			products (e.g. land use in ha)	nolicy options at the	
			as a measure for policy	science-policy-practice	
		l	as a measure for poney	science-poncy-practice	

	impact (1): 10) percentage of	interface in order to	
	high biodiversity relevant policy	enable transformative	
	decisions that are based on	changes that	
	the consideration of	biodiversity loss in en	
	his diversity values 11)	inclusive eress	
	Diodiversity values. 11)	inclusive, cross-	
	Biodiversity benefits are	sectoral and policy	
	included in teaching	coherent manner; 9)	
	curricula.	Promote action-	
		oriented research at the	
		science-policy-practice	
		interface that takes into	
		account the	
		knowledge, motivation	
		and concerns of the	
		different actors	
		involved:	

14. Reform economic sectors towards	1) Telecoupling	1) The target should	1) Companies disclose	1) Countries	1. SEA-EEA (2014)
sustainable practices, including along their	(including trade,	explicitly address	biodiversity impacts	implement labels on	https://seea.un.org/content/natural-capital-and-
national and transnational supply chains,	urban-rural	direct and indirect	throughout the value chain.	consumer products on	ecosystem-services-faq
achieving by 2030 a reduction of at least	relationships,	drivers of change (e.g.,	2) Countries implement	environmental-	2. TEEB (2018).
[50%] in negative impacts on biodiversity	feedback loops,	remote biodiversity	biodiversity footprint lables	friendlyness (e.g.,	http://teebweb.org/agrifood/measuring-what-matters-
	general notion of	impacts and	and metrics by 2030. 3)	traffic light system).	in-agriculture-and-food-systems/
	leakages, remote	telecoupling). By 2030,	Countries assess the	2) Countries enforce	3. Natural Capital Coalition. 2016.
	responsibility,	countries have	biodiversity impacts	minimum biodiversity	www.naturalcapitalcoalition.org/protocol
	growing awareness	enforced regulation to	embodied in their	standarts for imported	4. Marques et al. (2019),
	about the concept	fully monitor and	international trade (4). 4)	agricultural products.	https://doi.org/10.1038/s41559-019-0824-3
	of environmental	disclose biodiversity-	Countries have reduced their	3) Countries and	5. Vanham et al. (2019)
	footprint and	impacts along the	total consumption-related	sectors adopt binding	https://doi.org/10.1016/j.scitotenv.2019.133642
	indirect impacts of	value chain (including	biodiversity footprint by XX	goals to reduce	6. Lenzen et al (2012),
	consumption on	imports), and have	in 2050%. 5) percentage of	biodiversity footprints.	https://doi.org/10.1038/nature11145
	biodiversity) have	disclosed them for	stock-exchange-listed	4) Countries monitor	7. Chaudhary and Kastner, 2016,
	all been major	consumption products.	companies in each country	biodiversity footprints	https://doi.org/10.1016/j.gloenvcha.2016.03.013
	themes of research	By 2030, countries	that mention biodiversity in	using established	8. Schröter et al. (2018)
	in the recent years.	have reduced trade-	their corporate reponsibility	guidance such as	https://doi.org/10.1016/j.ecoser.2018.02.003
	2) A number of	related biodiversity	statements, or that participate	SEEA EEA (2014),	9. Koellner et al. (2019)
	biodiversity	impacts by at least	in zero-deforestation	TEEB 2018 and the	https://doi.org/10.1016/j.ecoser.2018.04.012
	footprint indicators	[50%]. 2) Indicators on	commitments or other	Natural Capital	10. Moran & Kanemoto (2017) 10.1038/s41559-
	have been	the use of and impacts	initiatives.	Protocol (2016). 5)	016-0023
	developed, refined	on biodiversity are		Life Cycle thinking	11. Wilting et al. (2017)
	or are under	included in Life Cycle		approaches should be	https://doi.org/10.1021/acs.est.6b05296
	development (no	Assessments, reported		used to quantify	12. Sterner et al. (2019)
	standard yet). 3)	in a transparent manner		biodiversity impacts	https://doi.org/10.1038/s41893-018-0194-x
	Indicators of	and included in		(For example multi-	13. Hicks et al. (2019)
	remote	decision making on		regional input-output	https://www.nature.com/articles/s41586-019-1592-6
	responsibility for	supply chain		analysis, Life Cycle	14. United Nations (2014) System of Environmental
	biodiversity	management,		Assessment,	Economic Accounting 2012 - Experimental
	impacts into	following established		biophysical accounting	Ecosystem Accounting. New York.
	corporate sector	guidance such as the		methods for impacts	https://ec.europa.eu/eurostat/documents/3859598/69
	are available. 4)	SEEA EEA (1)), TEEB		embodied in	25551/KS-05-14-103-EN-N.pdf
	National policies	2018 (2) and the		international trade).	15. Crenna et al. (2019)
	have to	Natural Capital			https://doi.org/10.1016/j.jclepro.2019.04.054.
	acknowledge and	Protocol 2016 (16).			16. Asselin, et al. (2019)
	account for				https://doi.org/10.1016/j.jclepro.2019.119262.
	impacts processes				
	on their national				
	territory have on				
	systems outside.				

15. Resources, including capacity- building, for implementing the framework have increased from all sources so that by 2030 resources have increased by [X%] and are commensurate with the ambition of the targets of the framework.	Not discussed during the workshop				
16. Establish and implement measures in all countries by 2030 to prevent potential adverse impacts of biotechnology on biodiversity.	Not discussed during the workshop				
17. People everywhere take measurable steps towards sustainable consumption and lifestyles, taking into account individual and national cultural and socioeconomic conditions, achieving by 2030 just and sustainable consumption levels.	Not discussed during the workshop				
18. Promote education and the generation, sharing and use of knowledge relating to biodiversity, in the case of the traditional knowledge, innovations and practices of indigenous peoples and local communities with their free, prior and informed consent, ensuring by 2030 that all decision makers have access to reliable and up-to-date information for the effective management of biodiversity.	 Biodiversity benefits of the cross-cultural projects through top-down directives and policies (1,2). Larger efforts on integrating different sources of knowledge are still needed. 	Re-formulate to address data standards (FAIR, open-access)	Proportion of FAIR and open access data (global and national)	 Strengthening the co-design of management and policy options at the science-policy-practice interface in order to enable transformative changes that address biodiversity loss in an inclusive, cross- sectoral and policy coherent manner; Promote action- oriented research at the science-policy-practice interface that takes into account the knowledge, motivation and concerns of the different actors involved; 	1. Ens et al. (2016) https://link.springer.com/article/10.1007/s10531- 016-1207-6 2. Tourinho et al. (2017) https://periodicos.ufpa.br/index.php/ncn/article/view/ 3350

19. Promote the full and effective participation of indigenous peoples and local communities, and of women and girls as well as youth, in decision-making related to the conservation and sustainable use of biodiversity, ensuring by 2030 equitable participation and rights over relevant resources.	1) Community based conservation and citizen science as a tool for empowerment 2) increasing threats and (lethal) violence against indigenous and local conservationists	 Number of projects and of participants in community based conservation projects. Number of projects and of participants in citizen science projects. Number of people involved in ecological restoration (public involvement in conservation) Decline in the frequency of violence against conservationists 	 Use community based conservation and citizen science as a tool for empowerment and behavioural change Promote law, policies and enforcement of these policies to protect indigenous communities and local conservationists 	Hecker et al. (2018) http://doi.org/10.5334/cstp.114 Kelly et al. (2019) https://doi.org/10.5751/ES- 10704-240116 Ballard et al. (2017) https://doi.org/10.1016/j.biocon.2016.05.024 Hecker et al. (2018) http://discovery.ucl.ac.uk/10058422/.
20. Foster diverse visions of good quality of life and unleash values of responsibility, to effect by 2030 new social norms for sustainabilty.	 Evidence shows the importance of moving beyond awareness towards behavioural and transformative change. Scenarios and positive futures are developped (e.g. Nature futures IPBES) (1). Determinants and barriers to pro- environmental behavior change have been identified (2) 	 Number of people with diets close to WHO standards. Number of km/flights/person Less flying. Number of people that value biodiversity. Declining cognitive distance knowledge to action. 	 Apply behavioral change theories to frame actions for biodiversity conservation (what needs to be done, who is reponsible, how should it be done) WHO and other UN bodies should include biodiversity into their sets of goals. 	1. Rosa et al. (2017) https://www.nature.com/articles/s41559-017-0273-9 2. van den Berg (2019) https://doi.org/10.1016/j.esr.2019.100420

* Target 6 on mitigation of climate change should be moved to Targets-Section b

** Targets-Section b) should be renamed to "Meeting people's needs through sustainable use, nature-based solutions and benefit-sharing", to emphasize the broad importance of nature-based solutions for a multitude of desired biodiversity-benefits for people

Contact:

Dr. Andrea Perino (andrea.perino@idiv.de)
Dr. María Felipe-Lucia (maria.felipe-lucia@idiv.de)
Prof. Aletta Bonn (aletta.bonn@idiv.de)
Prof. Henrique Miguel Pereira (hpereira@idiv.de)

Annex: List of contributors

Annex: List of contributors

Name	First name	Affiliation
Albert	Georg	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany
Bonn	Aletta	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany Friedrich-Schiller-University Jena, Germany
Bruelheide	Helge	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany Martin-Luther-University Halle-Wittenberg, Germany
Chamoin	Ariane	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany
Darbi	Marianne	Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
Dornelas	Maria	University of St. Andrews, UK
Eisenhauer	Nico	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany Friedrich-Schiller-University Jena, Germany
Essl	Franz	University Vienna, Austria
Farwig	Nina	Philipps-Universität Marburg, Germany
Feilhauer	Hannes	Freie Universität Berlin, Germany
Felipe-Lucia	Maria	Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany German Centre for integrative biodiversity research (iDiv), Leipzig, Germany
Förster	Johannes	Department Environmental Politics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
Freyhof	Jörg	Museum für Naturkunde, Berlin, Germany
Geschke	Jonas	Deutsche Forschungsgemeinschaft, Bonn, Germany
Gottschall	Felix	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany University Leipzig, Germany

Guerra	Carlos	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany Martin-Luther-University Halle-Wittenberg, Germany
Haase	Peter	University Duisburg-Essen, Germany
Hickler	Thomas	Senckenberg Biodiversity and Climate Research Centre (SBiK-F) Goethe-University Frankfurt, Germany
Jacob	Ute	Alfred-Wegener-Institute, Oldenburg, Germany
Kastner	Thomas	Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
Keil	Petr	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany
Kim	HyeJin	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany Martin-Luther-University Halle-Wittenberg, Germany
Kühl	Hjalmar	German Centre for integrative biodiversity research (iDiv), Max- Planck-Institute for evolutionary anthropology (MPI-EVA)
Kühn	Ingolf	Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
Lehmann	Gerlind	Humboldt University Berlin, Germany
Lenzner	Bernd	University Vienna, Austria
Maes	Joachim	Joint Research Institute (JRC), Ispra, Italy
Marquard	Elisabeth	Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
Marques	Alexandra	Joint Research Institute (JRC), Ispra, Italy
Marselle	Melissa	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
Methorst	Joel	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany

Meya	Jasper	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany University Leipzig, Germany
Meyer	Carsten	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany
Motivans	Elena	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
Navarro	Laetitia	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany Martin-Luther-University Halle-Wittenberg, Germany
Pacheco	Andrea	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany
Paul	Carola	Georg-August-Universität Göttingen, Germany
Pe'er	Guy	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
Pereira	Henrique	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany Martin-Luther-University Halle-Wittenberg, Germany
Perino	Andrea	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany
Pillar	Valério	Universidad Federal Rio Grande do Sul, Brazil
Рорр	Alexander	Potsdam Institut für Klimafolgenforschung (PIK), Germany
Quintero Uribe	Laura Catalina	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany Martin-Luther-University Halle-Wittenberg, Germany
Raab	Kristina	Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
Rakosy	Demetra	Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany German Centre for integrative biodiversity research (iDiv), Leipzig, Germany
Rouet-Leduc	Julia	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany

Schnabel	Florian	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany University Leipzig, Germany
Sikorski	Johannes	Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures
Staude	Ingmar	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany Martin-Luther-University Halle-Wittenberg, Germany
Švara	Vid	Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany RWTH Aachen University, Germany
Svenning	Jens-Christian	Aarhus University, Denmark
Trogisch	Stefan	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany Martin-Luther-University Halle-Wittenberg, Germany
van Klink	Roel	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany
Vandewalle	Marie	Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
Werner	Alexandra	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany Friedrich-Schiller-University, Jena, Germany
Winter	Marten	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany
Wirth	Christian	German Centre for integrative biodiversity research (iDiv), Leipzig, Germany University Leipzig, Germany
Zinngrebe	Yves	Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany